Article ID Journal Published Year Pages File Type
4620332 Journal of Mathematical Analysis and Applications 2009 20 Pages PDF
Abstract

In this paper, we show that minimization problems involving sublinear regularizing terms are ill-posed, in general, although numerical experiments in image processing give very good results. The energies studied here are inspired by image restoration and image decomposition. Rewriting the nonconvex sublinear regularizing terms as weighted total variations, we give a new approach to perform minimization via the well-known Chambolle's algorithm. The approach developed here provides an alternative to the well-known half-quadratic minimization one.

Related Topics
Physical Sciences and Engineering Mathematics Analysis