Article ID Journal Published Year Pages File Type
4620346 Journal of Mathematical Analysis and Applications 2009 12 Pages PDF
Abstract

In this paper, we show existence, uniqueness and exact asymptotic behavior of solutions near the boundary to a class of semilinear elliptic equations −Δu=λg(u)−b(x)f(u) in Ω, where λ is a real number, b(x)>0 in Ω and vanishes on ∂Ω. The special feature is to consider g(u) and f(u) to be regularly varying at infinity and b(x) is vanishing on the boundary with a more general rate function. The vanishing rate of b(x) determines the exact blow-up rate of the large solutions. And the exact blow-up rate allows us to obtain the uniqueness result.

Related Topics
Physical Sciences and Engineering Mathematics Analysis