Article ID Journal Published Year Pages File Type
4620353 Journal of Mathematical Analysis and Applications 2009 21 Pages PDF
Abstract

This paper is devoted to the analysis of flux schemes coupled with the reservoir technique for approximating hyperbolic equations and linear hyperbolic systems of conservation laws [F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, The reservoir scheme for systems of conservation laws, in: Finite Volumes for Complex Applications, III, Porquerolles, 2002, Lab. Anal. Topol. Probab. CNRS, Marseille, 2002, pp. 247–254 (electronic); F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, Un procédé de réduction de la diffusion numérique des schémas à différence de flux d'ordre un pour les systèmes hyperboliques non linéaires, C. R. Math. Acad. Sci. Paris 335 (7) (2002) 627–632; F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, The reservoir technique: A way to make Godunov-type schemes zero or very low diffusive. Application to Colella–Glaz, Eur. J. Mech. B Fluids 27 (6) (2008)]. We prove the long time convergence of the reservoir technique and its TVD property for some specific but still general configurations. Proofs are based on a precise study of the treatment by the reservoir technique of shock and rarefaction waves.

Related Topics
Physical Sciences and Engineering Mathematics Analysis