Article ID Journal Published Year Pages File Type
4620396 Journal of Mathematical Analysis and Applications 2009 11 Pages PDF
Abstract

We show that McShane and Pettis integrability coincide for functions , where μ is any finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelöf determined Banach space X, a scalarly null (hence Pettis integrable) function and an absolutely summing operator u from X to another Banach space Y such that the composition is not Bochner integrable; in particular, h is not McShane integrable.

Related Topics
Physical Sciences and Engineering Mathematics Analysis