Article ID Journal Published Year Pages File Type
4620420 Journal of Mathematical Analysis and Applications 2009 18 Pages PDF
Abstract

It is proved that C(K,E) (the space of all continuous functions on a Hausdorff compact space K taking values in a Banach space E) admits an equivalent locally uniformly rotund norm if C(K) and E do so. Moreover, if the equivalent LUR norms on C(K) and E are lower semicontinuous with respect to some weak topologies, the LUR norm on C(K,E) can be chosen to be lower semicontinuous with respect to an appropriate weak topology. As a consequence we prove that if X and Y are two Hausdorff compacta and C(X), C(Y) admit equivalent (pointwise lower semicontinuous) LUR norms, then so does C(X×Y).

Related Topics
Physical Sciences and Engineering Mathematics Analysis