Article ID Journal Published Year Pages File Type
4620531 Journal of Mathematical Analysis and Applications 2009 10 Pages PDF
Abstract

We present an inertial proximal method for solving an inclusion involving a nonmonotone set-valued mapping enjoying some regularity properties. More precisely, we investigate the local convergence of an implicit scheme for solving inclusions of the type T(x)∋0 where T is a set-valued mapping acting from a Banach space into itself. We consider subsequently the case when T is strongly metrically subregular, metrically regular and strongly regular around a solution to the inclusion. Finally, we study the convergence of our algorithm under variational perturbations.

Related Topics
Physical Sciences and Engineering Mathematics Analysis