Article ID Journal Published Year Pages File Type
4620537 Journal of Mathematical Analysis and Applications 2009 18 Pages PDF
Abstract

In a separable Banach space, for set-valued martingale, several equivalent conditions based on the measurable selections are discussed, and then, in an M-type 2 Banach space, at first we define single valued stochastic integral by the differential of a real valued Brownian motion, after that extend it to set-valued case. We prove that the set-valued stochastic integral becomes a set-valued submartingale, which is different from single valued case, and obtain the Castaing representation theorem for the set-valued stochastic integral, which is applicable for set-valued stochastic differential equations.

Related Topics
Physical Sciences and Engineering Mathematics Analysis