Article ID Journal Published Year Pages File Type
4620640 Journal of Mathematical Analysis and Applications 2008 16 Pages PDF
Abstract

Let B(X) be the algebra of bounded operators on a complex Banach space X. Viewing B(X) as an algebra over R, we study the structure of those irreducible subalgebras which contain nonzero compact operators. In particular, irreducible algebras of trace-class operators with real trace are characterized. This yields an extension of Brauer-type results on matrices to operators in infinite dimensions, answering the question: is an irreducible semigroup of compact operators with real spectra realizable, i.e., simultaneously similar to a semigroup whose matrices are real?

Related Topics
Physical Sciences and Engineering Mathematics Analysis