Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4620640 | Journal of Mathematical Analysis and Applications | 2008 | 16 Pages |
Abstract
Let B(X) be the algebra of bounded operators on a complex Banach space X. Viewing B(X) as an algebra over R, we study the structure of those irreducible subalgebras which contain nonzero compact operators. In particular, irreducible algebras of trace-class operators with real trace are characterized. This yields an extension of Brauer-type results on matrices to operators in infinite dimensions, answering the question: is an irreducible semigroup of compact operators with real spectra realizable, i.e., simultaneously similar to a semigroup whose matrices are real?
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis