Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4620848 | Journal of Mathematical Analysis and Applications | 2008 | 14 Pages |
Abstract
In this paper, we study the singular integralℑf(x)=p.v.∫Rnh(ρ(y))Ω(y′)ρβ(y)f(x−y)dy in Triebel–Lizorkin spaces. Here Ω∈L(logL+)(Sn−1)Ω∈L(logL+)(Sn−1) (n⩾2n⩾2), h is a measurable, locally integrable function defined on (0,∞)(0,∞); and ρ is a norm which is homogeneous with respect to certain non-isotropic dilations. For the special case when ρ is the usual Euclidean norm, we also consider the singular integral above in weighted Triebel–Lizorkin spaces for some appropriate weights.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Hung Viet Le,