Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4620854 | Journal of Mathematical Analysis and Applications | 2008 | 11 Pages |
Abstract
A new class of generalized convex functions, called the functions with pseudoconvex sublevel sets, is defined. They include quasiconvex ones. A complete characterization of these functions is derived. Further, it is shown that a continuous function admits pseudoconvex sublevel sets if and only if it is quasiconvex. Optimality conditions for a minimum of the nonsmooth nonlinear programming problem with inequality, equality and a set constraints are obtained in terms of the lower Hadamard directional derivative. In particular sufficient conditions for a strict global minimum are given where the functions have pseudoconvex sublevel sets.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis