Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4620970 | Journal of Mathematical Analysis and Applications | 2008 | 12 Pages |
Abstract
As a continuation to [F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab. 35 (2007) 1333–1350], where the Harnack inequality and the strong Feller property are studied for a class of stochastic generalized porous media equations, this paper presents analogous results for stochastic fast-diffusion equations. Since the fast-diffusion equation possesses weaker dissipativity than the porous medium one does, some technical difficulties appear in the study. As a compensation to the weaker dissipativity condition, a Sobolev–Nash inequality is assumed for the underlying self-adjoint operator in applications. Some concrete examples are constructed to illustrate the main results.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis