Article ID Journal Published Year Pages File Type
4620988 Journal of Mathematical Analysis and Applications 2008 8 Pages PDF
Abstract

In this paper, we study continuous linear operators on spaces of functions analytic on disks in the complex plane having as eigenvectors the monomials zn whose associated eigenvalues λn are distinct. In particular, we show that under mild conditions, such a diagonal operator has non-spectral invariant subspaces (that is, closed invariant subspaces which are not the closed linear span of collections of monomials) if and only if every entire function of a particular growth rate is representable as a generalized Dirichlet series .

Related Topics
Physical Sciences and Engineering Mathematics Analysis