Article ID Journal Published Year Pages File Type
4621005 Journal of Mathematical Analysis and Applications 2008 14 Pages PDF
Abstract

We consider the linear inverse problem of reconstructing an unknown finite measure μ from a noisy observation of a generalized moment of μ defined as the integral of a continuous and bounded operator Φ with respect to μ. Motivated by various applications, we focus on the case where the operator Φ is unknown; instead, only an approximation Φm to it is available. An approximate maximum entropy solution to the inverse problem is introduced in the form of a minimizer of a convex functional subject to a sequence of convex constraints. Under several assumptions on the convex functional, the convergence of the approximate solution is established.

Related Topics
Physical Sciences and Engineering Mathematics Analysis