Article ID Journal Published Year Pages File Type
4621064 Journal of Mathematical Analysis and Applications 2008 20 Pages PDF
Abstract

In this paper, we first give several operator identities involving the bivariate Rogers–Szegö polynomials. By applying the technique of parameter augmentation to the multiple q-binomial theorems given by Milne [S.C. Milne, Balanced summation theorems for U(n) basic hypergeometric series, Adv. Math. 131 (1997) 93–187], we obtain several new multiple q-series identities involving the bivariate Rogers–Szegö polynomials. These include multiple extensions of Mehler's formula and Rogers's formula. Our U(n+1) generalizations are quite natural as they are also a direct and immediate consequence of their (often classical) known one-variable cases and Milne's fundamental theorem for An or U(n+1) basic hypergeometric series in Theorem 1.49 of [S.C. Milne, An elementary proof of the Macdonald identities for , Adv. Math. 57 (1985) 34–70], as rewritten in Lemma 7.3 on p. 163 of [S.C. Milne, Balanced summation theorems for U(n) basic hypergeometric series, Adv. Math. 131 (1997) 93–187] or Corollary 4.4 on pp. 768–769 of [S.C. Milne, M. Schlosser, A new An extension of Ramanujan's summation with applications to multilateral An series, Rocky Mountain J. Math. 32 (2002) 759–792].

Related Topics
Physical Sciences and Engineering Mathematics Analysis