Article ID Journal Published Year Pages File Type
4621106 Journal of Mathematical Analysis and Applications 2008 18 Pages PDF
Abstract

In this paper extensions of the classical Fourier, fractional Fourier and Radon transforms to superspace are studied. Previously, a Fourier transform in superspace was already studied, but with a different kernel. In this work, the fermionic part of the Fourier kernel has a natural symplectic structure, derived using a Clifford analysis approach. Several basic properties of these three transforms are studied. Using suitable generalizations of the Hermite polynomials to superspace (see [H. De Bie, F. Sommen, Hermite and Gegenbauer polynomials in superspace using Clifford analysis, J. Phys. A 40 (2007) 10441–10456]) an eigenfunction basis for the Fourier transform is constructed.

Related Topics
Physical Sciences and Engineering Mathematics Analysis