Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621120 | Journal of Mathematical Analysis and Applications | 2008 | 12 Pages |
The aim of this paper is to establish the semilocal convergence of a multipoint third order Newton-like method for solving F(x)=0 in Banach spaces by using recurrence relations. The convergence of this method is studied under the assumption that the second Fréchet derivative of F satisfies Hölder continuity condition. This continuity condition is milder than the usual Lipschitz continuity condition. A new family of recurrence relations are defined based on the two new constants which depend on the operator F. These recurrence relations give a priori error bounds for the method. Two numerical examples are worked out to demonstrate the applicability of the method in cases where the Lipschitz continuity condition over second derivative of F fails but Hölder continuity condition holds.