Article ID Journal Published Year Pages File Type
4621120 Journal of Mathematical Analysis and Applications 2008 12 Pages PDF
Abstract

The aim of this paper is to establish the semilocal convergence of a multipoint third order Newton-like method for solving F(x)=0 in Banach spaces by using recurrence relations. The convergence of this method is studied under the assumption that the second Fréchet derivative of F satisfies Hölder continuity condition. This continuity condition is milder than the usual Lipschitz continuity condition. A new family of recurrence relations are defined based on the two new constants which depend on the operator F. These recurrence relations give a priori error bounds for the method. Two numerical examples are worked out to demonstrate the applicability of the method in cases where the Lipschitz continuity condition over second derivative of F fails but Hölder continuity condition holds.

Related Topics
Physical Sciences and Engineering Mathematics Analysis