Article ID Journal Published Year Pages File Type
4621244 Journal of Mathematical Analysis and Applications 2008 13 Pages PDF
Abstract

We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E={Ei}i∈I of a Hilbert space K and a surjective T∈L(K,H) in order that {T(Ei)}i∈I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031–1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.

Related Topics
Physical Sciences and Engineering Mathematics Analysis