Article ID Journal Published Year Pages File Type
4621273 Journal of Mathematical Analysis and Applications 2008 18 Pages PDF
Abstract

Denote by cf(X) the set of all nonempty convex closed subsets of a separable Banach space X. Let (Ω,Σ,μ) be a complete probability space and denote by (L1[Σ,cf(X)],Δ) the complete metric space of (equivalence classes of a.e. equal) integrably bounded cf(X)-valued functions. For any preassigned filtration (Σi), we describe the space of Δ-convergent integrably bounded cf(X)-valued martingales in terms of the Δ-closure of in L1[Σ,cf(X)]. In particular, we provide a formula to calculate the join of two such martingales and the positive part of such a martingale. Our object is achieved by considering the more general setting of a near vector lattice (S,d), endowed with a Riesz metric d. By means of Rådström's embedding theorem for such spaces, a link is established between the space of convergent martingales in S and the space of convergent martingales in the Rådström completion R(S) of S. This link provides information about the former space of martingales, via known properties of measure-free martingales in Riesz normed vector lattices, applicable to R(S). We also apply our general results to the spaces of Δ-convergent ck(X)-valued martingales, where ck(X) denotes the set of all nonempty convex compact subsets of X.

Related Topics
Physical Sciences and Engineering Mathematics Analysis