Article ID Journal Published Year Pages File Type
4621288 Journal of Mathematical Analysis and Applications 2008 12 Pages PDF
Abstract

Min–Max optimization is often used for improving robustness in Model Predictive Control (MPC). An analogy to this optimization could be the BDU (Bounded Data Uncertainties) method, which is a regularization technique for least-squares problems that takes into account the uncertainty bounds. Stability of MPC can be achieved by using terminal constraints, such as in the CRHPC (Constrained Receding-Horizon Predictive Control) algorithm. By combining both BDU and CRHPC methods, a robust and stable MPC is obtained, which is the aim of this work. BDU also offers a guided method of tuning the empirically tuned penalization parameter for the control effort in MPC.

Related Topics
Physical Sciences and Engineering Mathematics Analysis