Article ID Journal Published Year Pages File Type
4621313 Journal of Mathematical Analysis and Applications 2008 14 Pages PDF
Abstract

A differential equation model of HIV infection of CD4+T-cells with cure rate is studied. We prove that if the basic reproduction number R0<1, the HIV infection is cleared from the T-cell population and the disease dies out; if R0>1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if R0>1. Furthermore, we also obtain the conditions for which the system exists an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the results.

Related Topics
Physical Sciences and Engineering Mathematics Analysis