Article ID Journal Published Year Pages File Type
4621400 Journal of Mathematical Analysis and Applications 2008 15 Pages PDF
Abstract

In this paper we consider an intra-host model for the dynamics of malaria. The model describes the dynamics of the blood stage malaria parasites and their interaction with host cells, in particular red blood cells (RBC) and immune effectors. We establish the equilibrium points of the system and analyze their stability using the theory of competitive systems, compound matrices and stability of periodic orbits. We established that the disease-free equilibrium is globally stable if and only if the basic reproduction number satisfies R0⩽1 and the parasite will be cleared out of the host. If R0>1, a unique endemic equilibrium is globally stable and the parasites persist at the endemic steady state. In the presence of the immune response, the numerical analysis of the model shows that the endemic equilibrium is unstable.

Related Topics
Physical Sciences and Engineering Mathematics Analysis