Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621441 | Journal of Mathematical Analysis and Applications | 2008 | 17 Pages |
Abstract
In this paper, we develop a stochastic calculus related to a fractional Brownian sheet as in the case of the standard Brownian sheet. Let be a fractional Brownian sheet with Hurst parameters H=(H1,H2), and (2[0,1],B(2[0,1]),μ) a measure space. By using the techniques of stochastic calculus of variations, we introduce stochastic line integrals along all sufficiently smooth curves γ in 2[0,1], and four types of stochastic surface integrals: , i=1,2, , , , . As an application of these stochastic integrals, we prove an Itô formula for fractional Brownian sheet with Hurst parameters H1,H2∈(1/4,1). Our proof is based on the repeated applications of Itô formula for one-parameter Gaussian process.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis