Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621489 | Journal of Mathematical Analysis and Applications | 2008 | 18 Pages |
Abstract
In this paper we first revisit a classical problem of computing variational splines. We propose to compute local variational splines in the sense that they are interpolatory splines which minimize the energy norm over a subinterval. We shall show that the error between local and global variational spline interpolants decays exponentially over a fixed subinterval as the support of the local variational spline increases. By piecing together these locally defined splines, one can obtain a very good C0 approximation of the global variational spline. Finally we generalize this idea to approximate global tensor product B-spline interpolatory surfaces.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis