Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621495 | Journal of Mathematical Analysis and Applications | 2008 | 11 Pages |
Abstract
This paper extends the full convergence of the steepest descent method with a generalized Armijo search and a proximal regularization to solve minimization problems with quasiconvex objective functions on complete Riemannian manifolds. Previous convergence results are obtained as particular cases and some examples in non-Euclidian spaces are given. In particular, our approach can be used to solve constrained minimization problems with nonconvex objective functions in Euclidian spaces if the set of constraints is a Riemannian manifold and the objective function is quasiconvex in this manifold.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis