Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621600 | Journal of Mathematical Analysis and Applications | 2008 | 7 Pages |
Abstract
Let A be a unital normed algebra and let M be a unitary Banach left A-module. If f:A→M is an approximate module left derivation, then f:A→M is a module left derivation. Moreover, if M=A is a semiprime unital Banach algebra and f(tx) is continuous in t∈R for each fixed x in A, then every approximately linear left derivation f:A→A is a linear derivation which maps A into the intersection of its center Z(A) and its Jacobson radical rad(A). In particular, if A is semisimple, then f is identically zero.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis