Article ID Journal Published Year Pages File Type
4621620 Journal of Mathematical Analysis and Applications 2008 15 Pages PDF
Abstract

In uniform spaces, inspired by ideas of Banach, Tarafdar and Yuan, we introduce the concepts of generalized pseudodistances and generalized gauge maps, for set-valued dynamic systems we define various nonlinear asymptotic contractions and contractions with respect to these pseudodistances and gauges, provide conditions on the iterates of these set-valued dynamic systems and present a method which is useful for establishing conditions guaranteeing the existence and uniqueness of endpoints (stationary points) of these set-valued dynamic systems and conditions that each generalized sequence of iterations (in particular, each dynamic process) converges and the limit of a generalized sequence of iterations is an endpoint. The definitions, the results and the method are new for set-valued dynamic systems in uniform, locally convex and metric spaces and even for single-valued maps. The paper includes a number of various examples which show a fundamental difference between our results and those existing in the literature.

Related Topics
Physical Sciences and Engineering Mathematics Analysis