Article ID Journal Published Year Pages File Type
4621737 Journal of Mathematical Analysis and Applications 2008 13 Pages PDF
Abstract

For α>0, we study the singular integral operators TΩ,α and the Marcinkiewicz integral operator μΩ,α. The kernels of these operators behave like |y|−n−α near y=0, and contain a distribution Ω on the unit sphere Sn−1. We prove that if Ω∈Hr(Sn−1) (r=(n−1)/(n−1+α)) satisfying certain cancellation condition, then both TΩ,α and μΩ,α can be extend to be the bounded operators from the Sobolev space to the Lebesgue space Lp(Rn). The result improves and extends some known results.

Related Topics
Physical Sciences and Engineering Mathematics Analysis