Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621842 | Journal of Mathematical Analysis and Applications | 2007 | 16 Pages |
Abstract
In this paper we study the shape of least-energy solutions to the quasilinear problem εmΔmu−um−1+f(u)=0 with homogeneous Neumann boundary condition. We use an intrinsic variation method to show that as ε→0+, the global maximum point Pε of least-energy solutions goes to a point on the boundary ∂Ω at the rate of o(ε) and this point on the boundary approaches to a point where the mean curvature of ∂Ω achieves its maximum. We also give a complete proof of exponential decay of least-energy solutions.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis