Article ID Journal Published Year Pages File Type
4621862 Journal of Mathematical Analysis and Applications 2008 9 Pages PDF
Abstract

In this paper it is shown that irregular boundary points for p-harmonic functions as well as for quasiminimizers can be divided into semiregular and strongly irregular points with vastly different boundary behaviour. This division is emphasized by a large number of characterizations of semiregular points. The results hold in complete metric spaces equipped with a doubling measure supporting a Poincaré inequality. They also apply to Cheeger p-harmonic functions and in the Euclidean setting to A-harmonic functions, with the usual assumptions on A.

Related Topics
Physical Sciences and Engineering Mathematics Analysis