Article ID Journal Published Year Pages File Type
4621911 Journal of Mathematical Analysis and Applications 2008 13 Pages PDF
Abstract

The point source of this work is Seleznev's theorem which asserts the existence of a power series which satisfies universal approximation properties in C∗. The paper deals with a strengthened version of this result. We establish a double approximation theorem on formal power series using a weighted backward shift operator. Moreover we give strong conditions that guarantee the existence of common universal series of an uncountable family of weighted backward shift with respect to the simultaneous approximation. Finally we obtain results on admissible growth of universal formal power series. We especially prove that you cannot control the defect of analyticity of such a series even if there exist universal series in the well-known intersection of formal Gevrey classes.

Related Topics
Physical Sciences and Engineering Mathematics Analysis