Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621929 | Journal of Mathematical Analysis and Applications | 2007 | 10 Pages |
Abstract
This paper presents two existence results for Urysohn integral inclusions in Banach spaces, the set-valued integral involved being the Henstock integral. In particular, the existence of continuous solutions for integral inclusions of Volterra and of Hammerstein type is obtained. Our results extend the existence theorems given in literature in the single- or set-valued case, under Bochner or Pettis integrability hypothesis. The compactness of solutions set is also studied.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis