Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4621958 | Journal of Mathematical Analysis and Applications | 2007 | 17 Pages |
Abstract
We study the structure induced by the number of periodic solutions on the set of differential equations x′=f(t,x) where f∈C3(R2) is T-periodic in t, fx3(t,x)<0 for every (t,x)∈R2, and f(t,x)→∓∞ as x→∞, uniformly on t. We find that the set of differential equations with a singular periodic solution is a codimension-one submanifold, which divides the space into two components: equations with one periodic solution and equations with three periodic solutions. Moreover, the set of differential equations with exactly one periodic singular solution and no other periodic solution is a codimension-two submanifold.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis