Article ID Journal Published Year Pages File Type
4621959 Journal of Mathematical Analysis and Applications 2007 15 Pages PDF
Abstract

In this paper, we introduce two iterative schemes by the general iterative method for finding a common element of the set of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove two strong convergence theorems for nonexpansive mappings to solve a unique solution of the variational inequality which is the optimality condition for the minimization problem. These results extended and improved the corresponding results of Marino and Xu [G. Marino, H.K. Xu, A general iterative method for nonexpansive mapping in Hilbert spaces, J. Math. Anal. Appl. 318 (2006) 43–52], S. Takahashi and W. Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (1) (2007) 506–515], and many others.

Related Topics
Physical Sciences and Engineering Mathematics Analysis