Article ID Journal Published Year Pages File Type
4622026 Journal of Mathematical Analysis and Applications 2007 26 Pages PDF
Abstract

In this paper, a food chain model with ratio-dependent functional response is studied under homogeneous Neumann boundary conditions. The large time behavior of all non-negative equilibria in the time-dependent system is investigated, i.e., conditions for the stability at equilibria are found. Moreover, non-constant positive steady-states are studied in terms of diffusion effects, namely, Turing patterns arising from diffusion-driven instability (Turing instability) are demonstrated. The employed methods are comparison principle for parabolic problems and Leray–Schauder Theorem.

Related Topics
Physical Sciences and Engineering Mathematics Analysis