Article ID Journal Published Year Pages File Type
4622206 Journal of Mathematical Analysis and Applications 2008 26 Pages PDF
Abstract

We use the symmetry reduction method based on Lie group theory to obtain some exact solutions, the so-called invariant solutions, of the ideal magnetohydrodynamic equations in (3+1) dimensions. In particular, these equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras (1⩽r⩽4) was already known. We restrict our study to the three-dimensional Galilean-similitude subalgebras that give us systems composed of ordinary differential equations. Here, some examples of these solutions are presented with a brief physical interpretation.

Related Topics
Physical Sciences and Engineering Mathematics Analysis