Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4622285 | Journal of Mathematical Analysis and Applications | 2007 | 12 Pages |
Abstract
Let F1 (F2 respectively) denote the class of analytic functions f in the unit disk |z|<1 with f(0)=0=f′(0)−1 satisfying the condition RePf(z)<3/2 (RePf(z)>−1/2 respectively) in |z|<1, where Pf(z)=1+zf″(z)/f′(z). For any fixed z0 in the unit disk and λ∈[0,1), we shall determine the region of variability for logf′(z0) when f ranges over the class and , respectively.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis