Article ID Journal Published Year Pages File Type
4622285 Journal of Mathematical Analysis and Applications 2007 12 Pages PDF
Abstract

Let F1 (F2 respectively) denote the class of analytic functions f in the unit disk |z|<1 with f(0)=0=f′(0)−1 satisfying the condition RePf(z)<3/2 (RePf(z)>−1/2 respectively) in |z|<1, where Pf(z)=1+zf″(z)/f′(z). For any fixed z0 in the unit disk and λ∈[0,1), we shall determine the region of variability for logf′(z0) when f ranges over the class and , respectively.

Related Topics
Physical Sciences and Engineering Mathematics Analysis