Article ID Journal Published Year Pages File Type
4622431 Journal of Mathematical Analysis and Applications 2007 11 Pages PDF
Abstract

In this paper we will reconsider the topological structure of Menger probabilistic normed spaces (briefly PN-spaces) under the t-norm M. We will prove that this topology is compatible with the topology induced by a countable and separating family of semi-norms, and hence the well-known theorems of classical functional analysis (such as the principle of uniform boundedness, open mapping and closed graph theorems) are valid in this context also. We will meanwhile obtain a method by which one may construct easily a large class of PN-spaces. Finally, using this method, we see that a certain subspace of bounded linear operators between PN-spaces, i.e. the class of strongly bounded linear operators, has a natural PN structure.

Related Topics
Physical Sciences and Engineering Mathematics Analysis