Article ID Journal Published Year Pages File Type
4622454 Journal of Mathematical Analysis and Applications 2007 15 Pages PDF
Abstract

We study properties of solutions of the evolution equation , where B is a closable operator on the space AP(R,H) of almost periodic functions with values in a Hilbert space H such that B commutes with translations. The operator B generates a family of closed operators on H such that (whenever eiλtx∈D(B)). For a closed subset Λ⊂R, we prove that the following properties (i) and (ii) are equivalent: (i) for every function f∈AP(R,H) such that σ(f)⊆Λ, there exists a unique mild solution u∈AP(R,H) of Eq. (∗) such that σ(u)⊆Λ; (ii) is invertible for all λ∈Λ and .

Related Topics
Physical Sciences and Engineering Mathematics Analysis