Article ID Journal Published Year Pages File Type
4622456 Journal of Mathematical Analysis and Applications 2007 11 Pages PDF
Abstract

In this paper, we study the differential equations of the following form w2+R(z)2(w(k))=Q(z), where R(z), Q(z) are nonzero rational functions. We proved the following three conclusions: (1) If either P(z) or Q(z) is a nonconstant polynomial or k is an even integer, then the differential equation w2+P2(z)2(w(k))=Q(z) has no transcendental meromorphic solution; if P(z), Q(z) are constants and k is an odd integer, then the differential equation has only transcendental meromorphic solutions of the form f(z)=acos(bz+c). (2) If either P(z) or Q(z) is a nonconstant polynomial or k>1, then the differential equation w2+(z−z0)P2(z)2(w(k))=Q(z) has no transcendental meromorphic solution, furthermore the differential equation w2+A(z−z0)2(w′)=B, where A, B are nonzero constants, has only transcendental meromorphic solutions of the form , where a, b are constants such that Ab2=1, a2=B. (3) If the differential equation , where P is a nonconstant polynomial and Q is a nonzero rational function, has a transcendental meromorphic solution, then k is an odd integer and Q is a polynomial. Furthermore, if k=1, then Q(z)≡C (constant) and the solution is of the form f(z)=Bcosq(z), where B is a constant such that B2=C and q′(z)=±P(z).

Related Topics
Physical Sciences and Engineering Mathematics Analysis