Article ID Journal Published Year Pages File Type
4622639 Journal of Mathematical Analysis and Applications 2007 10 Pages PDF
Abstract

Suppose that {a(n)} is a discrete probability distribution on the set N0={0,1,2,…} and {p(n)} is some non-negative sequence defined on the same set. The equation defines a new sequence {b(n)}. Here {a*k(n)} denotes the k-fold convolution of the distribution {a(n)}. In the paper the asymptotic behaviour of the sequence {b(n)} is investigated. It is known that for the large classes of the sequences {a(n)} and {p(n)}, b(n)∼σp([σn]), where 1/σ is the mean of the distribution {a(n)}. The main object of the present work is to estimate the difference b(n)−σp([σn]) for some classes of the sequences {a(n)} and {p(n)}.

Related Topics
Physical Sciences and Engineering Mathematics Analysis