Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4622641 | Journal of Mathematical Analysis and Applications | 2007 | 24 Pages |
In this paper, we establish sharp two-sided estimates for the Green functions of non-symmetric diffusions with measure-valued drifts in bounded Lipschitz domains. As consequences of these estimates, we get a 3G type theorem and a conditional gauge theorem for these diffusions in bounded Lipschitz domains.Informally the Schrödinger-type operators we consider are of the form L+μ⋅∇+ν where L is a uniformly elliptic second order differential operator, μ is a vector-valued signed measure belonging to Kd,1 and ν is a signed measure belonging to Kd,2. In this paper, we establish two-sided estimates for the heat kernels of Schrödinger-type operators in bounded C1,1-domains and a scale invariant boundary Harnack principle for the positive harmonic functions with respect to Schrödinger-type operators in bounded Lipschitz domains.