Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4622743 | Journal of Mathematical Analysis and Applications | 2007 | 7 Pages |
Let A be a selfadjoint linear operator in a Hilbert space H. The DSM (dynamical systems method) for solving equation Av=f consists of solving the Cauchy problem , u(0)=u0, where Φ is a suitable operator, and proving that (i) ∃u(t) ∀t>0, (ii) ∃u(∞), and (iii) A(u(∞))=f. It is proved that if equation Av=f is solvable and u solves the problem , u(0)=u0, where a>0 is a parameter and u0 is arbitrary, then lima→0limt→∞u(t,a)=y, where y is the unique minimal-norm solution of the equation Av=f. Stable solution of the equation Av=f is constructed when the data are noisy, i.e., fδ is given in place of f, ‖fδ−f‖⩽δ. The case when a=a(t)>0, , a(t)↘0 as t→∞ is considered. It is proved that in this case limt→∞u(t)=y and if fδ is given in place of f, then limt→∞u(tδ)=y, where tδ is properly chosen.