Article ID Journal Published Year Pages File Type
4622778 Journal of Mathematical Analysis and Applications 2006 6 Pages PDF
Abstract

Consider a self map T defined on the union of two subsets A and B of a metric space and satisfying T(A)⊆B and T(B)⊆A. We give some contraction type existence results for a best proximity point, that is, a point x such that d(x,Tx)=dist(A,B). We also give an algorithm to find a best proximity point for the map T in the setting of a uniformly convex Banach space.

Related Topics
Physical Sciences and Engineering Mathematics Analysis