Article ID Journal Published Year Pages File Type
4622785 Journal of Mathematical Analysis and Applications 2006 13 Pages PDF
Abstract

In this article we prove that the basic finite Hankel transform whose kernel is the third-type Jackson q-Bessel function has only infinitely many real and simple zeros, provided that q satisfies a condition additional to the standard one. We also study the asymptotic behavior of the zeros. The obtained results are applied to investigate the zeros of q-Bessel functions as well as the zeros of q-trigonometric functions. A basic analog of a theorem of G. Pólya (1918) on the zeros of sine and cosine transformations is also given.

Related Topics
Physical Sciences and Engineering Mathematics Analysis