Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4622816 | Journal of Mathematical Analysis and Applications | 2006 | 14 Pages |
Abstract
The aim of this paper is to give characterizations for uniform and exponential dichotomies of evolution families on the half-line. We associate with a discrete evolution family Φ={Φ(m,n)}(m,n)∈Δ the subspace . Supposing that X1 is closed and complemented, we prove that the admissibility of the pair implies the uniform dichotomy of Φ. Under the same hypothesis on X1, we obtain that the admissibility of the pair with p∈(1,∞] is a sufficient condition for the exponential dichotomy of Φ, which becomes necessary when Φ is with exponential growth. We apply our results in order to deduce new characterizations for exponential dichotomy of evolution families in terms of the solvability of associated difference and integral equations.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis