Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4622826 | Journal of Mathematical Analysis and Applications | 2007 | 14 Pages |
Abstract
The problem of determining the pair w:={F(x,t);T0(t)} of source terms in the parabolic equation ut=(k(x)ux)x+F(x,t) and Robin boundary condition −k(l)ux(l,t)=v[u(l,t)−T0(t)] from the measured final data μT(x)=u(x,T) is formulated. It is proved that both components of the Fréchet gradient of the cost functional can be found via the same solution of the adjoint parabolic problem. Lipschitz continuity of the gradient is derived. The obtained results permit one to prove existence of a quasi-solution of the considered inverse problem, as well as to construct a monotone iteration scheme based on a gradient method.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis