Article ID Journal Published Year Pages File Type
4622933 Journal of Mathematical Analysis and Applications 2007 15 Pages PDF
Abstract

Let I⊂P(N) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space (X,M,μ), we obtain a statistical version of the Egorov theorem (when μ(X)<∞). We show that, in its assertion, equi-statistical convergence on a big set cannot be replaced by uniform statistical convergence. Also, we consider statistical convergence in measure and I-convergence in measure, with some consequences of the Riesz theorem. We prove that outer and inner statistical convergences in measure (for sequences of measurable functions) are equivalent if the measure is finite.

Related Topics
Physical Sciences and Engineering Mathematics Analysis