Article ID Journal Published Year Pages File Type
4622956 Journal of Mathematical Analysis and Applications 2007 14 Pages PDF
Abstract

It is well known that a scalar differential equation , where f(t,x) is continuous, T-periodic in t and weakly convex or concave in x has no, one or two T-periodic solutions or a connected band of T-periodic solutions. The last possibility can be excluded if f(t,x) is strictly convex or concave for some t in the period interval. In this paper we investigate how the actual number of T-periodic solutions for a given equation of this type in principle can be determined, if f(t,x) is also assumed to have a continuous derivative . It turns out that there are three cases. In each of these cases we indicate the monotonicity properties and the domain of values for the function P(ξ)=S(ξ)−ξ, where S(ξ) is the Poincaré successor function. From these informations the actual number of periodic solutions can be determined, since a zero of P(ξ) represents a periodic solution.

Related Topics
Physical Sciences and Engineering Mathematics Analysis