Article ID Journal Published Year Pages File Type
4623032 Journal of Mathematical Analysis and Applications 2007 18 Pages PDF
Abstract

We introduce the concept of hypomonotone point-to-set operators in Banach spaces, with respect to a regularizing function. This notion coincides with the one given by Rockafellar and Wets in Hilbertian spaces, when the regularizing function is the square of the norm. We study the associated proximal mapping, which leads to a hybrid proximal–extragradient and proximal–projection methods for nonmonotone operators in reflexive Banach spaces. These methods allow for inexact solution of the proximal subproblems with relative error criteria. We then consider the notion of local hypomonotonicity and propose localized versions of the algorithms, which are locally convergent.

Related Topics
Physical Sciences and Engineering Mathematics Analysis