Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4623066 | Journal of Mathematical Analysis and Applications | 2007 | 25 Pages |
Abstract
The discrete Ablowitz–Ladik hierarchy with four potentials and the Hamiltonian structures are derived. Under a constraint between the potentials and eigenfunctions, the nonlinearization of the Lax pairs associated with the discrete Ablowitz–Ladik hierarchy leads to a new symplectic map and a class of finite-dimensional Hamiltonian systems. The generating function of the integrals of motion is presented, by which the symplectic map and these finite-dimensional Hamiltonian systems are further proved to be completely integrable in the Liouville sense. Each member in the discrete Ablowitz–Ladik hierarchy is decomposed into a Hamiltonian system of ordinary differential equations plus the discrete flow generated by the symplectic map.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis